hugo/tpl/collections/where.go
Cameron Moore de7c32a1a8 tpl: Add template function namespaces
This commit moves almost all of the template functions into separate
packages under tpl/ and adds a namespace framework.  All changes should
be backward compatible for end users, as all existing function names in
the template funcMap are left intact.

Seq and DoArithmatic have been moved out of the helpers package and into
template namespaces.

Most of the tests involved have been refactored, and many new tests have
been written.  There's still work to do, but this is a big improvement.

I got a little overzealous and added some new functions along the way:

- strings.Contains
- strings.ContainsAny
- strings.HasSuffix
- strings.TrimPrefix
- strings.TrimSuffix

Documentation is forthcoming.

Fixes #3042
2017-04-30 10:56:38 +02:00

422 lines
11 KiB
Go

// Copyright 2017 The Hugo Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package collections
import (
"errors"
"fmt"
"reflect"
"strings"
"time"
)
// Where returns a filtered subset of a given data type.
func (ns *Namespace) Where(seq, key interface{}, args ...interface{}) (interface{}, error) {
seqv, isNil := indirect(reflect.ValueOf(seq))
if isNil {
return nil, errors.New("can't iterate over a nil value of type " + reflect.ValueOf(seq).Type().String())
}
mv, op, err := parseWhereArgs(args...)
if err != nil {
return nil, err
}
var path []string
kv := reflect.ValueOf(key)
if kv.Kind() == reflect.String {
path = strings.Split(strings.Trim(kv.String(), "."), ".")
}
switch seqv.Kind() {
case reflect.Array, reflect.Slice:
return ns.checkWhereArray(seqv, kv, mv, path, op)
case reflect.Map:
return ns.checkWhereMap(seqv, kv, mv, path, op)
default:
return nil, fmt.Errorf("can't iterate over %v", seq)
}
}
func (ns *Namespace) checkCondition(v, mv reflect.Value, op string) (bool, error) {
v, vIsNil := indirect(v)
if !v.IsValid() {
vIsNil = true
}
mv, mvIsNil := indirect(mv)
if !mv.IsValid() {
mvIsNil = true
}
if vIsNil || mvIsNil {
switch op {
case "", "=", "==", "eq":
return vIsNil == mvIsNil, nil
case "!=", "<>", "ne":
return vIsNil != mvIsNil, nil
}
return false, nil
}
if v.Kind() == reflect.Bool && mv.Kind() == reflect.Bool {
switch op {
case "", "=", "==", "eq":
return v.Bool() == mv.Bool(), nil
case "!=", "<>", "ne":
return v.Bool() != mv.Bool(), nil
}
return false, nil
}
var ivp, imvp *int64
var svp, smvp *string
var slv, slmv interface{}
var ima []int64
var sma []string
if mv.Type() == v.Type() {
switch v.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
iv := v.Int()
ivp = &iv
imv := mv.Int()
imvp = &imv
case reflect.String:
sv := v.String()
svp = &sv
smv := mv.String()
smvp = &smv
case reflect.Struct:
switch v.Type() {
case timeType:
iv := toTimeUnix(v)
ivp = &iv
imv := toTimeUnix(mv)
imvp = &imv
}
case reflect.Array, reflect.Slice:
slv = v.Interface()
slmv = mv.Interface()
}
} else {
if mv.Kind() != reflect.Array && mv.Kind() != reflect.Slice {
return false, nil
}
if mv.Len() == 0 {
return false, nil
}
if v.Kind() != reflect.Interface && mv.Type().Elem().Kind() != reflect.Interface && mv.Type().Elem() != v.Type() {
return false, nil
}
switch v.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
iv := v.Int()
ivp = &iv
for i := 0; i < mv.Len(); i++ {
if anInt := toInt(mv.Index(i)); anInt != -1 {
ima = append(ima, anInt)
}
}
case reflect.String:
sv := v.String()
svp = &sv
for i := 0; i < mv.Len(); i++ {
if aString := toString(mv.Index(i)); aString != "" {
sma = append(sma, aString)
}
}
case reflect.Struct:
switch v.Type() {
case timeType:
iv := toTimeUnix(v)
ivp = &iv
for i := 0; i < mv.Len(); i++ {
ima = append(ima, toTimeUnix(mv.Index(i)))
}
}
}
}
switch op {
case "", "=", "==", "eq":
if ivp != nil && imvp != nil {
return *ivp == *imvp, nil
} else if svp != nil && smvp != nil {
return *svp == *smvp, nil
}
case "!=", "<>", "ne":
if ivp != nil && imvp != nil {
return *ivp != *imvp, nil
} else if svp != nil && smvp != nil {
return *svp != *smvp, nil
}
case ">=", "ge":
if ivp != nil && imvp != nil {
return *ivp >= *imvp, nil
} else if svp != nil && smvp != nil {
return *svp >= *smvp, nil
}
case ">", "gt":
if ivp != nil && imvp != nil {
return *ivp > *imvp, nil
} else if svp != nil && smvp != nil {
return *svp > *smvp, nil
}
case "<=", "le":
if ivp != nil && imvp != nil {
return *ivp <= *imvp, nil
} else if svp != nil && smvp != nil {
return *svp <= *smvp, nil
}
case "<", "lt":
if ivp != nil && imvp != nil {
return *ivp < *imvp, nil
} else if svp != nil && smvp != nil {
return *svp < *smvp, nil
}
case "in", "not in":
var r bool
if ivp != nil && len(ima) > 0 {
r = ns.In(ima, *ivp)
} else if svp != nil {
if len(sma) > 0 {
r = ns.In(sma, *svp)
} else if smvp != nil {
r = ns.In(*smvp, *svp)
}
} else {
return false, nil
}
if op == "not in" {
return !r, nil
}
return r, nil
case "intersect":
r, err := ns.Intersect(slv, slmv)
if err != nil {
return false, err
}
if reflect.TypeOf(r).Kind() == reflect.Slice {
s := reflect.ValueOf(r)
if s.Len() > 0 {
return true, nil
}
return false, nil
}
return false, errors.New("invalid intersect values")
default:
return false, errors.New("no such operator")
}
return false, nil
}
func evaluateSubElem(obj reflect.Value, elemName string) (reflect.Value, error) {
if !obj.IsValid() {
return zero, errors.New("can't evaluate an invalid value")
}
typ := obj.Type()
obj, isNil := indirect(obj)
// first, check whether obj has a method. In this case, obj is
// an interface, a struct or its pointer. If obj is a struct,
// to check all T and *T method, use obj pointer type Value
objPtr := obj
if objPtr.Kind() != reflect.Interface && objPtr.CanAddr() {
objPtr = objPtr.Addr()
}
mt, ok := objPtr.Type().MethodByName(elemName)
if ok {
if mt.PkgPath != "" {
return zero, fmt.Errorf("%s is an unexported method of type %s", elemName, typ)
}
// struct pointer has one receiver argument and interface doesn't have an argument
if mt.Type.NumIn() > 1 || mt.Type.NumOut() == 0 || mt.Type.NumOut() > 2 {
return zero, fmt.Errorf("%s is a method of type %s but doesn't satisfy requirements", elemName, typ)
}
if mt.Type.NumOut() == 1 && mt.Type.Out(0).Implements(errorType) {
return zero, fmt.Errorf("%s is a method of type %s but doesn't satisfy requirements", elemName, typ)
}
if mt.Type.NumOut() == 2 && !mt.Type.Out(1).Implements(errorType) {
return zero, fmt.Errorf("%s is a method of type %s but doesn't satisfy requirements", elemName, typ)
}
res := objPtr.Method(mt.Index).Call([]reflect.Value{})
if len(res) == 2 && !res[1].IsNil() {
return zero, fmt.Errorf("error at calling a method %s of type %s: %s", elemName, typ, res[1].Interface().(error))
}
return res[0], nil
}
// elemName isn't a method so next start to check whether it is
// a struct field or a map value. In both cases, it mustn't be
// a nil value
if isNil {
return zero, fmt.Errorf("can't evaluate a nil pointer of type %s by a struct field or map key name %s", typ, elemName)
}
switch obj.Kind() {
case reflect.Struct:
ft, ok := obj.Type().FieldByName(elemName)
if ok {
if ft.PkgPath != "" && !ft.Anonymous {
return zero, fmt.Errorf("%s is an unexported field of struct type %s", elemName, typ)
}
return obj.FieldByIndex(ft.Index), nil
}
return zero, fmt.Errorf("%s isn't a field of struct type %s", elemName, typ)
case reflect.Map:
kv := reflect.ValueOf(elemName)
if kv.Type().AssignableTo(obj.Type().Key()) {
return obj.MapIndex(kv), nil
}
return zero, fmt.Errorf("%s isn't a key of map type %s", elemName, typ)
}
return zero, fmt.Errorf("%s is neither a struct field, a method nor a map element of type %s", elemName, typ)
}
// parseWhereArgs parses the end arguments to the where function. Return a
// match value and an operator, if one is defined.
func parseWhereArgs(args ...interface{}) (mv reflect.Value, op string, err error) {
switch len(args) {
case 1:
mv = reflect.ValueOf(args[0])
case 2:
var ok bool
if op, ok = args[0].(string); !ok {
err = errors.New("operator argument must be string type")
return
}
op = strings.TrimSpace(strings.ToLower(op))
mv = reflect.ValueOf(args[1])
default:
err = errors.New("can't evaluate the array by no match argument or more than or equal to two arguments")
}
return
}
// checkWhereArray handles the where-matching logic when the seqv value is an
// Array or Slice.
func (ns *Namespace) checkWhereArray(seqv, kv, mv reflect.Value, path []string, op string) (interface{}, error) {
rv := reflect.MakeSlice(seqv.Type(), 0, 0)
for i := 0; i < seqv.Len(); i++ {
var vvv reflect.Value
rvv := seqv.Index(i)
if kv.Kind() == reflect.String {
vvv = rvv
for _, elemName := range path {
var err error
vvv, err = evaluateSubElem(vvv, elemName)
if err != nil {
return nil, err
}
}
} else {
vv, _ := indirect(rvv)
if vv.Kind() == reflect.Map && kv.Type().AssignableTo(vv.Type().Key()) {
vvv = vv.MapIndex(kv)
}
}
if ok, err := ns.checkCondition(vvv, mv, op); ok {
rv = reflect.Append(rv, rvv)
} else if err != nil {
return nil, err
}
}
return rv.Interface(), nil
}
// checkWhereMap handles the where-matching logic when the seqv value is a Map.
func (ns *Namespace) checkWhereMap(seqv, kv, mv reflect.Value, path []string, op string) (interface{}, error) {
rv := reflect.MakeMap(seqv.Type())
keys := seqv.MapKeys()
for _, k := range keys {
elemv := seqv.MapIndex(k)
switch elemv.Kind() {
case reflect.Array, reflect.Slice:
r, err := ns.checkWhereArray(elemv, kv, mv, path, op)
if err != nil {
return nil, err
}
switch rr := reflect.ValueOf(r); rr.Kind() {
case reflect.Slice:
if rr.Len() > 0 {
rv.SetMapIndex(k, elemv)
}
}
case reflect.Interface:
elemvv, isNil := indirect(elemv)
if isNil {
continue
}
switch elemvv.Kind() {
case reflect.Array, reflect.Slice:
r, err := ns.checkWhereArray(elemvv, kv, mv, path, op)
if err != nil {
return nil, err
}
switch rr := reflect.ValueOf(r); rr.Kind() {
case reflect.Slice:
if rr.Len() > 0 {
rv.SetMapIndex(k, elemv)
}
}
}
}
}
return rv.Interface(), nil
}
// toInt returns the int value if possible, -1 if not.
func toInt(v reflect.Value) int64 {
switch v.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int()
case reflect.Interface:
return toInt(v.Elem())
}
return -1
}
// toString returns the string value if possible, "" if not.
func toString(v reflect.Value) string {
switch v.Kind() {
case reflect.String:
return v.String()
case reflect.Interface:
return toString(v.Elem())
}
return ""
}
var (
zero reflect.Value
errorType = reflect.TypeOf((*error)(nil)).Elem()
timeType = reflect.TypeOf((*time.Time)(nil)).Elem()
)
func toTimeUnix(v reflect.Value) int64 {
if v.Kind() == reflect.Interface {
return toTimeUnix(v.Elem())
}
if v.Type() != timeType {
panic("coding error: argument must be time.Time type reflect Value")
}
return v.MethodByName("Unix").Call([]reflect.Value{})[0].Int()
}