// Copyright 2017 The Hugo Authors. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package math import ( "errors" "math" "reflect" "github.com/spf13/cast" ) // New returns a new instance of the math-namespaced template functions. func New() *Namespace { return &Namespace{} } // Namespace provides template functions for the "math" namespace. type Namespace struct{} // Add adds two numbers. func (ns *Namespace) Add(a, b interface{}) (interface{}, error) { return DoArithmetic(a, b, '+') } // Ceil returns the least integer value greater than or equal to x. func (ns *Namespace) Ceil(x interface{}) (float64, error) { xf, err := cast.ToFloat64E(x) if err != nil { return 0, errors.New("Ceil operator can't be used with non-float value") } return math.Ceil(xf), nil } // Div divides two numbers. func (ns *Namespace) Div(a, b interface{}) (interface{}, error) { return DoArithmetic(a, b, '/') } // Floor returns the greatest integer value less than or equal to x. func (ns *Namespace) Floor(x interface{}) (float64, error) { xf, err := cast.ToFloat64E(x) if err != nil { return 0, errors.New("Floor operator can't be used with non-float value") } return math.Floor(xf), nil } // Log returns the natural logarithm of a number. func (ns *Namespace) Log(a interface{}) (float64, error) { af, err := cast.ToFloat64E(a) if err != nil { return 0, errors.New("Log operator can't be used with non integer or float value") } return math.Log(af), nil } // Mod returns a % b. func (ns *Namespace) Mod(a, b interface{}) (int64, error) { ai, erra := cast.ToInt64E(a) bi, errb := cast.ToInt64E(b) if erra != nil || errb != nil { return 0, errors.New("Modulo operator can't be used with non integer value") } if bi == 0 { return 0, errors.New("The number can't be divided by zero at modulo operation") } return ai % bi, nil } // ModBool returns the boolean of a % b. If a % b == 0, return true. func (ns *Namespace) ModBool(a, b interface{}) (bool, error) { res, err := ns.Mod(a, b) if err != nil { return false, err } return res == int64(0), nil } // Mul multiplies two numbers. func (ns *Namespace) Mul(a, b interface{}) (interface{}, error) { return DoArithmetic(a, b, '*') } // Round returns the nearest integer, rounding half away from zero. func (ns *Namespace) Round(x interface{}) (float64, error) { xf, err := cast.ToFloat64E(x) if err != nil { return 0, errors.New("Round operator can't be used with non-float value") } return _round(xf), nil } // Sub subtracts two numbers. func (ns *Namespace) Sub(a, b interface{}) (interface{}, error) { return DoArithmetic(a, b, '-') } // DoArithmetic performs arithmetic operations (+,-,*,/) using reflection to // determine the type of the two terms. func DoArithmetic(a, b interface{}, op rune) (interface{}, error) { av := reflect.ValueOf(a) bv := reflect.ValueOf(b) var ai, bi int64 var af, bf float64 var au, bu uint64 switch av.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: ai = av.Int() switch bv.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: bi = bv.Int() case reflect.Float32, reflect.Float64: af = float64(ai) // may overflow ai = 0 bf = bv.Float() case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: bu = bv.Uint() if ai >= 0 { au = uint64(ai) ai = 0 } else { bi = int64(bu) // may overflow bu = 0 } default: return nil, errors.New("Can't apply the operator to the values") } case reflect.Float32, reflect.Float64: af = av.Float() switch bv.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: bf = float64(bv.Int()) // may overflow case reflect.Float32, reflect.Float64: bf = bv.Float() case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: bf = float64(bv.Uint()) // may overflow default: return nil, errors.New("Can't apply the operator to the values") } case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: au = av.Uint() switch bv.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: bi = bv.Int() if bi >= 0 { bu = uint64(bi) bi = 0 } else { ai = int64(au) // may overflow au = 0 } case reflect.Float32, reflect.Float64: af = float64(au) // may overflow au = 0 bf = bv.Float() case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: bu = bv.Uint() default: return nil, errors.New("Can't apply the operator to the values") } case reflect.String: as := av.String() if bv.Kind() == reflect.String && op == '+' { bs := bv.String() return as + bs, nil } return nil, errors.New("Can't apply the operator to the values") default: return nil, errors.New("Can't apply the operator to the values") } switch op { case '+': if ai != 0 || bi != 0 { return ai + bi, nil } else if af != 0 || bf != 0 { return af + bf, nil } else if au != 0 || bu != 0 { return au + bu, nil } return 0, nil case '-': if ai != 0 || bi != 0 { return ai - bi, nil } else if af != 0 || bf != 0 { return af - bf, nil } else if au != 0 || bu != 0 { return au - bu, nil } return 0, nil case '*': if ai != 0 || bi != 0 { return ai * bi, nil } else if af != 0 || bf != 0 { return af * bf, nil } else if au != 0 || bu != 0 { return au * bu, nil } return 0, nil case '/': if bi != 0 { return ai / bi, nil } else if bf != 0 { return af / bf, nil } else if bu != 0 { return au / bu, nil } return nil, errors.New("Can't divide the value by 0") default: return nil, errors.New("There is no such an operation") } }